Learn how to build high-performance machine learning applications by harnessing the power of the Google TensorFlow C++ API.
This guide provides a step-by-step example of how to load and run a TensorFlow model using the TensorFlow C API. This API allows you to integrate TensorFlow functionality into C/C++ applications.
Install TensorFlow C API: Follow the instructions at https://www.tensorflow.org/install/lang_c to install the TensorFlow C API on your system.
Include TensorFlow headers:
#include "tensorflow/core/public/c/c_api.h"
TF_Graph* graph = TF_NewGraph();
TF_Status* status = TF_NewStatus();
TF_Buffer* graph_def = TF_LoadFile("path/to/model.pb", status);
TF_ImportGraphDefOptions* opts = TF_ImportGraphDefOptionsNew();
TF_GraphImportGraphDef(graph, graph_def, opts, status);
TF_SessionOptions* options = TF_NewSessionOptions();
TF_Session* session = TF_NewSession(graph, options, status);
float input_data[] = {1.0f, 2.0f, 3.0f};
TF_Tensor* input_tensor = TF_NewTensor(
TF_FLOAT, /* data type */
{1, 3}, /* dimensions */
input_data, /* data */
sizeof(input_data) /* data size */
);
const char* input_op_name = "input_tensor";
const char* output_op_name = "output_tensor";
TF_Output input_op = {TF_GraphOperationByName(graph, input_op_name), 0};
TF_Output output_op = {TF_GraphOperationByName(graph, output_op_name), 0};
TF_Tensor* output_tensor = nullptr;
TF_SessionRun(
session,
nullptr, /* run options */
&input_op, &input_tensor, 1, /* input tensors */
&output_op, &output_tensor, 1, /* output tensors */
nullptr, 0, /* target operations */
nullptr, /* run metadata */
status /* status */
);
float* output_data = static_cast<float*>(TF_TensorData(output_tensor));
TF_DeleteTensor(input_tensor);
TF_DeleteTensor(output_tensor);
TF_DeleteSession(session, status);
TF_DeleteGraph(graph);
TF_DeleteStatus(status);
Note: This is a basic example and may require modifications depending on your specific model and use case. Refer to the TensorFlow C++ API documentation for more details.
This C++ code demonstrates how to load a pre-trained TensorFlow model, prepare input data, run the model inference, process the output, and clean up resources using the TensorFlow C API. It includes loading a graph from a .pb file, creating a session, defining input data as a tensor, running the session with specified input and output operations, extracting output data from the output tensor, and deleting allocated TensorFlow objects.
#include "tensorflow/core/public/c/c_api.h"
#include <iostream>
int main() {
// 1. Load the TensorFlow Graph
TF_Graph* graph = TF_NewGraph();
TF_Status* status = TF_NewStatus();
TF_Buffer* graph_def = TF_LoadFile("path/to/model.pb", status);
if (TF_GetCode(status) != TF_OK) {
std::cerr << "Error loading graph: " << TF_Message(status) << std::endl;
return 1;
}
TF_ImportGraphDefOptions* opts = TF_ImportGraphDefOptionsNew();
TF_GraphImportGraphDef(graph, graph_def, opts, status);
if (TF_GetCode(status) != TF_OK) {
std::cerr << "Error importing graph: " << TF_Message(status) << std::endl;
return 1;
}
// 2. Create a Session
TF_SessionOptions* options = TF_NewSessionOptions();
TF_Session* session = TF_NewSession(graph, options, status);
if (TF_GetCode(status) != TF_OK) {
std::cerr << "Error creating session: " << TF_Message(status) << std::endl;
return 1;
}
// 3. Prepare Input Data
float input_data[] = {1.0f, 2.0f, 3.0f};
int64_t dims[] = {1, 3};
TF_Tensor* input_tensor = TF_NewTensor(
TF_FLOAT, dims, 2, input_data, sizeof(input_data), nullptr, nullptr);
// 4. Run the Session
const char* input_op_name = "input_tensor";
const char* output_op_name = "output_tensor";
TF_Output input_op = {TF_GraphOperationByName(graph, input_op_name), 0};
TF_Output output_op = {TF_GraphOperationByName(graph, output_op_name), 0};
TF_Tensor* output_tensor = nullptr;
TF_SessionRun(
session, nullptr, &input_op, &input_tensor, 1, &output_op,
&output_tensor, 1, nullptr, 0, nullptr, status);
if (TF_GetCode(status) != TF_OK) {
std::cerr << "Error running session: " << TF_Message(status) << std::endl;
return 1;
}
// 5. Process Output Data
float* output_data = static_cast<float*>(TF_TensorData(output_tensor));
int output_size = TF_NumElements(output_tensor);
std::cout << "Output: ";
for (int i = 0; i < output_size; ++i) {
std::cout << output_data[i] << " ";
}
std::cout << std::endl;
// 6. Cleanup
TF_DeleteTensor(input_tensor);
TF_DeleteTensor(output_tensor);
TF_DeleteSession(session, status);
TF_DeleteGraph(graph);
TF_DeleteStatus(status);
TF_DeleteBuffer(graph_def);
TF_DeleteImportGraphDefOptions(opts);
TF_DeleteSessionOptions(options);
return 0;
}
Explanation:
.pb
file.Before running this code:
"path/to/model.pb"
with the actual path to your TensorFlow model file."input_tensor"
and "output_tensor"
with the correct names of the input and output operations in your model.This code provides a basic framework for loading and running a TensorFlow model using the C API. You can modify and extend it based on your specific model and requirements.
General Considerations:
TF_New*
and TF_Delete*
. Memory leaks are a real concern if not handled properly.TF_Status
) to catch and handle errors gracefully.Beyond the Basics:
Troubleshooting:
Alternatives:
This guide provides a concise walkthrough of using the TensorFlow C API to execute a pre-trained TensorFlow model.
Steps:
Installation: Begin by installing the TensorFlow C API on your system using the instructions provided in the TensorFlow documentation.
Initialization: Include the necessary TensorFlow header file (c_api.h
) and load your pre-trained model from a .pb
file.
Session Setup: Create a TensorFlow session, which is responsible for executing the model graph.
Input Preparation: Prepare your input data as a TF_Tensor
object, specifying its data type, dimensions, and values.
Execution: Run the TensorFlow session, providing it with the input tensor, output tensor, and the names of the input and output operations in your model graph.
Output Processing: Access the output data from the output tensor, which now contains the model's predictions.
Resource Management: Ensure proper cleanup by deleting all allocated TensorFlow objects (tensors, session, graph, status).
Key Points:
By following these steps, you can effectively leverage the TensorFlow C API to integrate machine learning models into your C/C++ applications, enabling you to perform tasks like image classification, object detection, and natural language processing. Remember to consult the TensorFlow C API documentation for detailed information and advanced usage scenarios.